Optimal Degrees of Synaptic Connectivity

نویسندگان

  • Ashok Litwin-Kumar
  • Kameron Decker Harris
  • Richard Axel
  • Haim Sompolinsky
  • L. F. Abbott
چکیده

Synaptic connectivity varies widely across neuronal types. Cerebellar granule cells receive five orders of magnitude fewer inputs than the Purkinje cells they innervate, and cerebellum-like circuits, including the insect mushroom body, also exhibit large divergences in connectivity. In contrast, the number of inputs per neuron in cerebral cortex is more uniform and large. We investigate how the dimension of a representation formed by a population of neurons depends on how many inputs each neuron receives and what this implies for learning associations. Our theory predicts that the dimensions of the cerebellar granule-cell and Drosophila Kenyon-cell representations are maximized at degrees of synaptic connectivity that match those observed anatomically, showing that sparse connectivity is sometimes superior to dense connectivity. When input synapses are subject to supervised plasticity, however, dense wiring becomes advantageous, suggesting that the type of plasticity exhibited by a set of synapses is a major determinant of connection density.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Second Atom-Bond Connectivity Index

The atom-bond connectivity index of graph is a topological index proposed by Estrada et al. as ABC (G)  uvE (G ) (du dv  2) / dudv , where the summation goes over all edges of G, du and dv are the degrees of the terminal vertices u and v of edge uv. In the present paper, some upper bounds for the second type of atom-bond connectivity index are computed.

متن کامل

Highly connected neurons spike less frequently in balanced networks.

Biological neuronal networks exhibit highly variable spiking activity. Balanced networks offer a parsimonious model of this variability in which strong excitatory synaptic inputs are canceled by strong inhibitory inputs on average, and irregular spiking activity is driven by fluctuating synaptic currents. Most previous studies of balanced networks assume a homogeneous or distance-dependent conn...

متن کامل

Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding

The synaptic connectivity within neuronal networks is thought to determine the information processing they perform, yet network structure-function relationships remain poorly understood. By combining quantitative anatomy of the cerebellar input layer and information theoretic analysis of network models, we investigated how synaptic connectivity affects information transmission and processing. S...

متن کامل

A synaptic organizing principle for cortical neuronal groups.

Neuronal circuitry is often considered a clean slate that can be dynamically and arbitrarily molded by experience. However, when we investigated synaptic connectivity in groups of pyramidal neurons in the neocortex, we found that both connectivity and synaptic weights were surprisingly predictable. Synaptic weights follow very closely the number of connections in a group of neurons, saturating ...

متن کامل

Reconstruction of Sparse Circuits Using Multi-neuronal Excitation (RESCUME)

One of the central problems in neuroscience is reconstructing synaptic connectivity in neural circuits. Synapses onto a neuron can be probed by sequentially stimulating potentially pre-synaptic neurons while monitoring the membrane voltage of the post-synaptic neuron. Reconstructing a large neural circuit using such a “brute force” approach is rather time-consuming and inefficient because the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2017